Modern Borehole Analytics
for Annular Flow, Hole Cleaning and Pressure Control
by
Wilson C. Chin, Ph.D., M.I.T.
Stratamagnetic Software, LLC
October 2017
Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1. Fundamental Ideas and Background . . . . . . . . . . . . . . . 1
1.1 Background, industry challenges and frustrations . . . . 2
1.1.1 Annular flow modeling issues and
problem definition . . . . . . . . . . . . . . . . . . . 3
1.1.2 Mudcake growth, dynamic coupling and
reservoir interaction . . . . . . . . . . . . . . . . . . 7
1.2 Related prior work . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Steady Annular Flow . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Graphical interface basics . . . . . . . . . . . . . . . . . . 15
2.2 Steady flows - versatile capabilities . . . . . . . . . . . . . 20
2.2.1 Concentric Newtonian annular flow . . . . . . . 20
2.2.2 Concentric Newtonian flow on coarse mesh . . 31
2.2.3 Coarse mesh Newtonian flow with cuttings
beds and washout . . . . . . . . . . . . . . . . . . 33
2.2.4 Eccentricity effects, pressure gradient fixed . . . 63
2.2.4.1 Eccentricity = 0.000 for annulus . . . . . 64
2.2.4.2 Eccentricity = 0.333 for annulus . . . . . 65
2.2.4.3 Eccentricity = 0.500 for annulus . . . . . 66
2.2.4.4 Eccentricity = 0.667 for annulus . . . . . 67
2.2.4.5 Eccentricity = 0.833 for annulus . . . . . 68
2.2.5 Eccentricity = 0.833 for annulus, volume flow
rate specified . . . . . . . . . . . . . . . . . . . . . 72
2.2.6 Eccentricity = 0.833 for annulus, pressure
gradient specified, yield stress allowed . . . . . . 79
2.2.7 Non-Newtonian effects pressure gradient
versus flow rate curve, no yield stress . . . . . . 86
2.2.8 Non-Newtonian effects, pressure gradient
vs flow rate curve, non-zero yield stress . . . . . 95
2.2.9 Power law fluid in eccentric annulus, effect of
pipe or casing speed . . . . . . . . . . . . . . . . . 99
2.2.10 Steady-state swab-surge in eccentric annuli for
Power law fluids with and without circulation
(no rotation) . . . . . . . . . . . . . . . . . . . . . 102
(i) Basic concepts . . . . . . . . . . . . . . . . . 103
(ii) Macroscopic rheological properties . . . . . 105
(iii) Newtonian fluids . . . . . . . . . . . . . . . . 105
(iv) Power law fluids . . . . . . . . . . . . . . . . 108
(v) Swab-surge examples . . . . . . . . . . . . . 109
(vi) Neutral pressure gradient operation . . . . . 114
2.2.11 Steady-state swab-surge in concentric annuli for
Power law fluids with drillpipe rotation but
small pipe movement . . . . . . . . . . . . . . . . 115
2.2.12 Steady-state swab-surge in eccentric annuli
for Herschel-Bulkley fluids with drillpipe
rotation and axial movement . . . . . . . . . . . . 117
2.2.13 Transient swab-surge on a steady-state basis . . 132
2.2.14 Equivalent circulating density (ECD)
calculations . . . . . . . . . . . . . . . . . . . . . . 133
2.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3. Transient Single-Phase Flows . . . . . . . . . . . . . . . . . . . 135
3.1 Validation runs, three different approaches to steady,
Power law, non-rotating, concentric annular flow . . . 136
3.2 Validation run for transient, Newtonian,
non-rotating, concentric annular flow . . . . . . . . . . . 138
3.3 Validation run for transient, Newtonian,
non-rotating, eccentric annular flow . . . . . . . . . . . . 141
3.4 Effect of steady rotation for laminar Power law
flows in concentric annuli . . . . . . . . . . . . . . . . . . 142
3.5 Effect of steady-state rotation for Newtonian fluid
flow in eccentric annuli . . . . . . . . . . . . . . . . . . . 146
3.6 Effect of steady rotation for Power law flows in
highly eccentric annuli at low densities (foams) . . . . 149
3.7 Effect of steady rotation for Power law flows in highly
eccentric annuli at high densities (heavy muds) . . . . . 152
3.8 Effect of mud pump ramp-up and ramp-down flow
rate under non-rotating and rotating conditions . . . . 155
3.9 Effect of rotational and azimuthal start-up . . . . . . . . 158
3.10 Effect of axial drillstring movement . . . . . . . . . . . 162
3.11 Combined rotation and sinusoidal reciprocation . . . . 165
3.12 Combined rotation and sinusoidal reciprocation in
presence of mud pump flow rate ramp-up for yield
stress fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.13 References . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4. Transient Multiphase Flows . . . . . . . . . . . . . . . . . . . . 171
4.1 Single fluid in pipe and borehole system
calculating total pressure drops for general
non-Newtonian fluids . . . . . . . . . . . . . . . . . . . 173
4.2 Interface tracking and total pressure drop for
multiple fluids pumped in drillpipe and eccentric
borehole system . . . . . . . . . . . . . . . . . . . . . . . 174
(i) Interface tracking and example . . . . . . . . . . . 182
(ii) On real interfaces . . . . . . . . . . . . . . . . . . . 199
4.3 Calculating annular and drillpipe pressure loss . . . . . 199
(i) Newtonian pipe flow model . . . . . . . . . . . . . 200
(ii) Bingham plastic pipe flow . . . . . . . . . . . . . . 201
(iii) Power law fluids in pipe flow . . . . . . . . . . . . 201
(iv) Herschel-Bulkley pipe flow model . . . . . . . . . 202
(v) Ellis fluids in pipe flow . . . . . . . . . . . . . . . . 203
(vi) Annular flow solutions . . . . . . . . . . . . . . . . 203
(vii) Review of steady eccentric flow models . . . . . . 204
4.4 Herschel-Bulkley pipe flow analysis . . . . . . . . . . . 207
4.5 Transient, three-dimensional, eccentric multiphase
flow analysis for non-rotating Newtonian fluids . . . 210
(i) Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 210
(ii) Transient flow subtleties . . . . . . . . . . . . . . . 213
(iii) Examples 2 and 3 . . . . . . . . . . . . . . . . . . . 215
4.6 Transient, 3D, eccentric multiphase analysis for non-
rotating Newtonian fluids simulator description . . 216
4.7 Transient, 3D, eccentric multiphase analysis for
general rotating non-Newtonian fluids simulator
description . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.8 Transient, 3D, eccentric, multiphase analysis for
general rotating non-Newtonian fluids with axial pipe
movement Validation runs for completely stationary
pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
(i) Validation 1 Concentric, single-phase Newtonian
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
(ii) Validation 2 Concentric, two-phase Newtonian
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
(iii) Validation 3 Concentric, single-phase
Herschel-Bulkley flow . . . . . .. . . . . . . . . . . . 234
(iv) Validation 4 Concentric, two-phase Herschel-
Bulkley flow . . . . . . . . . . . . . . . . . . . . . . 236
(v) Validation 5 Eccentric, single and
multiphase, non-Newtonian flow . . . . . . . . . 239
4.9 Transient, 3D, concentric, multiphase analysis for
rotating Power law fluids without axial pipe
movement . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.10 Transient, 3D, eccentric, multiphase analysis for
general rotating non-Newtonian fluids with axial pipe
movement . . . . . . . . . . . . . . . . . . . . . . . . . 248
(i) Validation runs for constant rate rotation and
translation . . . . . . . . . . . . . . . . . . . . . . . . 248
(ii) Steady, rotating, non-Newtonian, single-phase,
eccentric flow solution . . . . . . . . . . . . . . . . 248
(iii) Steady, rotating, Newtonian, single-phase,
eccentric flow solution . . . . . . . . . . . . . . . . 250
(iv) Mixing problem . . . . . . . . . . . . . . . . . . . . 251
4.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5. Mudcake Formation in Single-Phase Flow . . . . . . . . . . . 259
5.1 Flows with moving boundaries four basic problems . . 260
5.1.1 Linear mudcake buildup on filter paper . . . . . . 263
5.1.2 Plug flow of two liquids in linear core
without cake . . . . . . . . . . . . . . . . . . . . . . 266
5.1.3 Simultaneous mudcake buildup and filtrate
invasion in a linear core (liquid flows) . . . . . . . 268
5.1.4 Simultaneous mudcake buildup and filtrate
invasion in a radial geometry (liquid flows) . . . . 271
5.2 Characterizing mud and mudcake properties . . . . . . . 277
5.2.1 Simple extrapolation of mudcake properties . . . 278
5.2.2 Radial mudcake growth on cylindrical
filter paper . . . . . . . . . . . . . . . . . . . . . . . 279
5.3 Complex invasion problems numerical modeling . . . 283
5.3.1 Finite difference modeling . . . . . . . . . . . . . . 283
(i) Basic formulas . . . . . . . . . . . . . . . . . . 283
(ii) Model constant density flow analysis . . . . . 285
5.3.2 Invasion and mudcake growth examples . . . . . . 288
5.3.2.1 Lineal liquid displacement without
mudcake . . . . . . . . . . . . . . . . . . . . 288
5.3.2.2 Cylindrical radial liquid displacement
without cake . . . . . . . . . . . . . . . . . 294
5.3.2.3 Spherical radial liquid displacement
without cake . . . . . . . . . . . . . . . . . 298
5.3.2.4 Simultaneous mudcake buildup and
displacement front motion for
incompressible liquid flows . . . . . . . . . 300
(i) Matching conditions at displacement
front . . . . . . . . . . . . . . . . . . . 303
(ii) Matching conditions at the cake-to-
rock interface . . . . . . . . . . . . . . 304
(iii) Modeling formation
heterogeneities . . . . . . . . . . . . . 308
(iv) Mudcake compaction and
compressibility . . . . . . . . . . . . . 308
(v) Modeling borehole activity . . . . . . 309
5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6. Mudcake Growth for Multiphase Flow . . . . . . . . . . . . . . 311
6.1 Physical problem description . . . . . . . . . . . . . . . . 312
6.2 Overview physics and simulation capabilities . . . . . . 316
6.2.1 Example 1, Single probe, infinite anisotropic
media . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.2.2 Example 2, Single probe, three layer medium . . . 320
6.2.3 Example 3, Dual probe pumping, three layer
medium . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.2.4 Example 4, Straddle packer pumping . . . . . . . . 323
6.3 Model and user interface notes . . . . . . . . . . . . . . . 325
6.4 Detailed applications . . . . . . . . . . . . . . . . . . . . . 328
6.4.1 Run No. 1, Clean-up, single-probe, uniform
medium . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.4.2 Run No. 2, A low-permeability "supercharging"
example . . . . . . . . . . . . . . . . . . . . . . . . . 334
6.4.3 Run No. 3, A three-layer simulation . . . . . . . . 336
6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7. Pore Pressure in Higher Mobility Formations . . . . . . . . . 340
7.1 Forward and inverse modeling approaches . . . . . . . . 341
7.2 Preliminary ideas . . . . . . . . . . . . . . . . . . . . . . . 342
7.2.1 Qualitative effects of storage and skin . . . . . . . 342
7.2.2 The simplest inverse model steady pressure drop
for arbitrary dip angles . . . . . . . . . . . . . . . 343
7.2.3 FT-00 and FT-01 . . . . . . . . . . . . . . . . . . . . 346
7. 3 Inverse examples dip angle, multivalued solutions
and skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
7.3.1 Forward model FT-00 . . . . . . . . . . . . . . . . . 347
7.3.2 Inverse model FT-01 multivalued solutions . . . 349
7.3.3 Effects of dip angle detailed calculations . . . . 352
7.3.4 Pulse interaction method an introduction . . . . . 355
7.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
8. Pore Pressure Prediction in Low Mobility or Tight
Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.1 Low permeability pulse interference testing
nonzero skin . . . . . . . . . . . . . . . . . . . . . . . . . 360
(i) Run A, Pulse interaction, kh >> kv,
moderate skin . . . . . . . . . . . . . . . . . . . . . . . 361
(ii) Run B, Pulse interaction, kh >> kv, high skin . . . . 363
8.2 Low permeability pulse interference testing
zero skin . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
(i) Run C, ks = 4.642 md, with kh = 10 md and
kv = 1 md . . . . . . . . . . . . . . . . . . . . . . . . . 366
(ii) Run D, ks = 4.642 md, with kh = 4.642 md and
kv = 4.642 md . . . . . . . . . . . . . . . . . . . . . . . 368
(iii) Run E, ks = 4.642 md, with kh = 1 md and
kv = 100.027 md . . . . . . . . . . . . . . . . . . . . . 370
8.3 Formation Testing While Drilling (FTWD) . . . . . . . . 372
8.3.1 Pressure transient drawdown-buildup approach . 372
8.3.2 Interpretation in low mobility, high flowline storage environments . . . . . . . . . . . . . . . . . 372
8.3.3 Multiple pretests, modeling and interpretation . . 375
8.3.4 Reverse flow injection processes . . . . . . . . . . 378
8.3.4.1 Conventional fluid withdrawal,
drawdown-then-buildup . . . . . . . . . . 379
8.3.4.2 Reverse flow injection process,
buildup-then-drawdown . . . . . . . . . . 383
8.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Cumulative References . . . . . . . . . . . . . . . . . . . . . . . . . 389
(i) Drilling, Cementing and Annular Flow . . . . . . . . . . . 389
(ii) Formation Testing Pressure and Contamination Analysis 395
(iii) Reservoir Engineering and Simulation . . . . . . . . . . . 401
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418